

Policy-based Network Management for
NeXt Generation Spectrum Access Control

Filip Perich
Shared Spectrum Company

Vienna, Virginia, USA
fperich@sharedspectrum.com

Abstract—This paper describes the design and implementation

of a policy-based spectrum access control framework as part of
the DARPA NeXt Generation communications program. The
main emphasis of the framework is to overcome two types of
concerns: harmful interference caused by a malfunctioning device
and harmful interference caused by a malicious user. In tandem
with signal-detection-based interference-avoidance algorithms
employed by software-defined radios, we design a set of policy-
based components, tightly integrated with the accredited kernel
on the radio, for avoiding potentially harmful interference caused
by a malfunctioning device. The policy conformance and
enforcement components ensure that a radio does not violate
policies, which define regulatory and other stakeholders’ goals
and requirements, and which are encoded in an abstract,
declarative language. We further secure the policy management
and distribution mechanisms in order to prevent malicious users
from altering loaded policies as well as from inserting additional
policies and thus causing a harmful interference. Additionally, we
report on a prototype implementation and demonstration of our
framework, which qualitatively illustrates the capability offered
to radio for enforcing policies and the capability for managing
radios and securing access control to interfaces changing the
radio’s configuration.

Keywords—Interference Avoidance, Policy, Radio Spectrum

Management, Security.

I. INTRODUCTION

Smart software-defined radios (SDR) offer tremendous
performance and operational benefits. These include the ability
to employ dynamic spectrum access methods, to tailor the
system design to a user’s unique circumstance, and to remotely
configure and control networks; however, SDRs pose high
security risks. The risks continue to hinder deployment of the
technology. For the technology to succeed, SDR developers
must carefully examine and mitigate these risks.

The main source of security concerns is the “smartness” or
the ability to reconfigure a deployed software-defined radio. It
is almost ironic that the main advantage of the technology is
also its main weakness. On one hand are concerns focusing on
risks due to a radio’s malfunction. On the other hand are
concerns that focus on security threats caused by a malicious
user. Both types severely impact the technology’s future.

Some concerns are generic and apply to any technology.
These concerns need to be adjusted in order to focus on
specific software-defined radio features. For example, although

a malicious user could use a software-defined radio to interfere
with an existing system, there is other adaptive technology
readily available that could cause the same harm. The main
concern should instead focus on how much easier it is to use a
software-defined radio to achieve the interference versus other
available technology.

Other concerns, however, require a careful examination and
need to be mitigated as they focus on characteristics and
consequences of using adaptive software. Adaptive software
can change its operation mode throughout the life of the radio.
It is difficult and often unfeasible to verify all states of a
software-defined radio. Additionally, a software-defined radio
may operate in numerous bands during its lifetime. For each
band, the software may need to emulate different processes. As
the final processes may be unknown prior to a device’s
production, the processes may need to change and re-configure
dynamically. This raises many issues as to who should perform
these operations and what effects these operations can have.
This is very different from existing radio technology and
significantly impacts current certification practices.

A model is, therefore, necessary that addresses these
security threats. Without mitigating the challenges, SDR
technology is risking its own existence. If the technology is not
accepted by existing commercial and military spectrum
stakeholders, it will never be adopted. Moreover, if the
technology is not accepted by regulatory stakeholders, it
cannot legally be produced and made available to public.

To address the challenges of SDR technology as well as to
quantify the benefits it has to offer, the DARPA NeXt
Generation (XG) Communications Program [1] is developing
novel technologies and system concepts for dynamically
redistributing allocated spectrum along with novel
technologies to enable spectrum pooling and secondary
spectrum sharing. The program focuses on both technical
challenges, such as processing power and signal sensing
requirements, and acceptance challenges, a subset of which are
the security risks.

As part of the XG program, Shared Spectrum Company is
developing a policy-based network management framework
for controlling spectrum access. This article reports on the
prototype implementation and results of the effort that were
successfully demonstrated in the summer of 2006. [2]

This work was supported in part by the U.S. Department of Defense
Advanced Research Projects Agency XG Program under Contract
FA8750-05-C-0150.)

We designed a policy-based approach as policies enable a
uniform yet flexible model for controlling devices built by
different manufacturers. Additionally, as radios may operate in
bands and locations under different jurisdictions and points of
control, a policy-based approach allows each controlling body
to re-use the model for adjusting devices to suit current
requirements as well as for coordinating with other entities.

Our approach consists of three areas. First area defines the
foundation for representing policies. It provides the capability
to define in a computer-understandable way what a radio can
do and what the radio must not do. The area consists of a
declarative policy language, types, rules, and instances. Next
area defines accredited policy components on the device for
enforcing policies by restricting the device’s operational state.
The last area defines a framework for securely creating,
managing, and controlling the device policies.

The benefits of our approach are:
- Ease of configuration – By changing policies and their

content, one can modify any configuration, setting, or rule
used by heterogeneous devices.

- Ease of policy authoring – By using a declarative
language, one can create a generic policy abstracting the low-
level requirements of specific devices.

- Secure policy management – Using the management
framework one can control what policies a device is using as
well as monitor a device for its actions. The framework is
further secured for limiting who can control the devices.

- Secure policy distribution – Using the policy distribution
framework, one can securely transmit policy commands and
queries to devices as well as receive responses.

- Secure policy enforcement – Policy components are part of
an accredited kernel, which has a direct control over the
transmitter and can thus impose limits on transmitted power
and frequencies.

- Automated policy synchronization – Policy components
automatically identify stale policies and either request an
update or stop the device from transmitting until the policies
are updated.

- Automated policy conflict resolution – Policy enforcement
component automatically combines all policies and permits
transmissions only if requirements imposed by all applicable
policies are met.

- Automated opportunity discovery – Policy components
automatically determine sufficient device states that would
satisfy policy enforcement requirements and make them
available to the device as additional spectrum opportunities.

In the present paper, we describe the policy-based
framework and explore the benefits it provides. In Section 2,
we describe the overall policy-based control architecture, the
language, and the processes. In Section 3, we offer details on
implementation and prototype demonstration. In conclusion we
provide suggestions for future work.

II. POLICY SYSTEM ARCHITECTURE

A. Regulatory/ Control and Configuration Framework
Smart software-defined radios and their security challenges

have recently attracted vast interest and spawned topics of
discussions across many communities. However, many of the
questions raised are familiar; many of them were raised with
other disruptive technologies. One thing that sets SDR apart
from some of these technologies is the sheer scope of their
potential, and as a result, the variety of interested parties they
affect. A unique aspect of software-defined radios is that they
propose a radically different approach from currently
established principles that affects many stakeholders.

The stakeholders – represented as actors – and their impact
on software-defined radios are illustrated in Fig. 1. Although,
the actors are the same as for any other wireless technology,
the difference is where each actor can influence the design,
implementation, and deployment of a radio.

XG users and XG operators range from commercial and
military bodies that are interested in pooling spectra together in
order to improve their current spectrum access. There are also
other XG users and XG operators who are interested in leasing
spectrum or using spectrum available to the second market. In
order to differentiate current users and operators using the
spectrum from potential users and operators of XG software-
defined radios, without loss of generality we refer to the latter
as XG users and XG operators.

Next there are spectrum owners, users, and regulators who
are excited about sharing spectrum with others or making
sharing more available. At the same time, these “actors”
require an assurance that the software-defined radios will not
interfere with current spectrum users.

Monito
r

Monitor,

Diagnose,

Update,

& Publish

Monito
r,

Diagnose
,

& Pull

Concerns

Complains

Figure 1. A policy-controlled software-defined radio needs to enforce

requirements of operator, user, regulatory bodies and other spectrum
stakeholders.

The traditional model employs a prevention mode to
eliminate security threats. First, regulators define fixed
requirements for building an application-specific radio. A
manufacturer designs, produces, and proves to regulators that
the built radio satisfies the requirements in order for the radio
to be classified as “certified”. Only then can an operator or
user purchase such a radio. Although the radio device may be
configurable, the configuration options are minimal in
comparison to the capability of configuring software-defined
radios, and thus for the lack of better words, the radio is
“certified and locked”. Therefore, devices are open to
modification during manufacturer’s design and production
phases only. In subsequent steps, devices are already locked.
This implies that a manufacturer selects and initially
configures devices. There is no support for future updates to
manufacturer or regulatory policies on the device.
Additionally, there is only a limited, indirect support for future
updates to an operator’s custom policies affecting the device.
These updates are external to the device. There is no support
for explicitly enforcing regulatory, manufacturer’s, or
operator’s policies on the device. Security threats are thus
mitigated – prevented – by design.

For SDR design we advocate an avoidance mode for
eliminating security threats. Regulators still define fixed
requirements; however, the requirements are now for a generic
radio. A manufacturer designs, produces, and proves to
regulators that her radio satisfies the requirements in order for
the radio to be classified as certified. The device, however,
contains software modules that allow for the radio to be re-
configured dynamically at later times. Therefore, the radio is
“certified and open” as it can operate in different bands
emulating different applications. At the same time regulators
also define regulatory policies, which are applicable to specific
applications and which are certified by the regulators for use.
In this operating mode, the XG operator purchases an open,
certified device from a manufacturer. The XG operator then

specifies the type of application the radio is to be used for by
providing the device through a secure link with appropriate
certified policies. The SDR device now consists of two
certified objects – (i) a policy component, as part of the
certified radio, which ensures that the radio conforms to
policies, and (ii) the certified policies, which clearly define
what the radio can do and what the radio must not do.
Therefore, security threats caused by malicious users are
prevented through enforced security guards on the device and
on the interface links as any other device would do; however,
security threats caused by malfunctioning or modifying a
device are now eliminated by dynamically avoiding them.

This approach addresses concerns raised by any stakeholder
that is affected by smart software-defined radios. The approach
allows regulators and other points of control to continue
controlling where and how software-defined devices are
allowed to transmit, yet at the same time this approach allows
XG operators and XG users take the full advantage of a
software-defined radio technology.

B. Policy Architecture Components
While the policy-based architecture advantages are clear, the

complexity lies in the details. How can a software-defined
radio be securely modified, directly and indirectly, by users,
operators and regulators? How can a software-defined radio
change its functionality by simply uploading different policies?
How can a software-defined radio decide what policies to
enforce? How can a software-defined radio resolve policy
conflicts?

To address these questions, we divide the policy architecture
intro three areas. The overall architecture is depicted in Fig. 2.

The first area represents a policy language with a set of
policy classes and their respective instances. We delve into the
details in the next section.

Policy Foundation
Policy LanguagePolicy Language

Policy Types and RulesPolicy Types and Rules

Policy InstancesPolicy Instances

Managed
Policy Sets
Database

Managed
Policy Sets
Database

Policy
Admin. Console

Policy
Admin. Console

Stakeholder
Spectrum Regulators and
Other Policy Writers

Existing
Policy

Repository

Existing
Policy

Repository

Policy Analysis and
Validation Tools

Policy Analysis and
Validation Tools

Policy
Authoring Editor

Policy
Authoring Editor

Software-Defined
Radio
Software-Defined
Radio

Accreditation Boundary

System Strategy
Reasoner

Tuner/ModemTuner/Modem Accredited Kernel

Policy
Database
Policy

Database

Policy
Conformance

Reasoner

Policy
Conformance

Reasoner

Policy EnforcerPolicy Enforcer

Policy
Manager
Policy

Manager

Override
Approve / Deny

Provide
Requirements

Network Administrator

Figure 2. Distributed Policy-based Spectrum Access Control Architecture. The software-defined radio includes a localized policy enforcer responsible for
controlling spectrum access based on requirements provided by regulatory and other stakeholders. The radio is managed by a network administrator who relies on

stakeholders for providing up-to-date policies.

The second area represents on-node policy components.
These are components that are present on every software-
defined radio platform, although as is illustrated later in this
article, some of the components may be transferred onto a
proxy controller. The components include a policy manager for
managing local policies and responding to remote commands,
a policy conformance reasoner for reasoning over policies and
device-provided evidence, a system strategy reasoner for
adjusting and selecting the device’s operational mode, and a
policy enforcer for governing the radio by permitting only
allowed transmission requests.

From the policy perspective, the system strategy reasoner
(SSR) represents an external module that controls the
hardware, gathers data, forms strategies, and acts as an
interface for transmitting and receiving data.

The SSR is responsible for interacting with the policy
conformance reasoner in order to determine what spectrum
opportunities are currently available. Using that information,
the SSR can determine and execute applicable system
strategies that are needed in order to for the radio’s
transmissions to conform to policies.

Additionally, the SSR is responsible for providing the policy
component with an access to its current state as well as
evidential results obtained from other radio components,
including detectors, and data received from other radios.

It is, however, the policy enforcer (PE), which is responsible
for assuring that the device does not cause harmful interference
by enforcing that the SSR configures the radio in one of the
approved opportunity states and by filtering transmission
requests sent to the transmitter on the software-defined radio.

The last area represents off-node policy components used by
policy administrators and analyzers. For analyzers, this area
includes policy authoring editor together with policy analysis
and validation tools. For administrators, the area consists of a
manager console and a policy dissemination framework.

The Policy Administration Console provides a secure
interactive method for operators to remotely modify the state
of one or many radios. The operators are able to modify both
policies and operational modes in which a radio or group of
radios operates. The console relies on a X.509 Public Key
Infrastructure (PKI) for authorization, authentication, and
accounting [3]. Additionally, the console relies on a secure
dissemination framework for securing direct and multicast
links between the console and devices. Through the secure
link, the console communicates with a Policy Manager located
on the smart radio or on its proxy.

The details of policy management and provisioning are
described in the subsequent section. Before we describe how
policies are uploaded onto a device and how they are employed
by the device, we must first define the policies.

C. Policy Language
The XG Policy Language represents a declarative, semantic

language for expressing policies and logic used for guiding
operation of software-defined radios. Its main purpose of the
language is to allow regulators, operators, and users to define
abstractly requirements for controlling access to a spectrum,
using a policy-driven evidential approach.

The language defines concepts for expressing knowledge
about a radio frequency device, its components, capabilities,
and current state. The language also defines concepts for
expressing restrictions on the devices and its components.
Finally, the language defines concepts for combining the
restrictions and definitions into rules and policies.

The language is based on the W3C Web Ontology Language
(OWL) [4], which provides an interoperable, machine
independent language for expressing information that can be
processed by humans and by software applications. Using
OWL, one can create ontologies, which define vocabularies for
representing meaning of a subset of domain-dependent terms
and the relationships between those terms. Using these
ontologies, one can annotate information that can be shared
and used to infer additional information across heterogeneous
domains, applications, and platforms.

Additionally, the language employs concepts from Deontic
logic for expressing actions a device can undertake. The
language focuses on two concepts – permissions and
prohibitions. Permission defines what a device is allowed to do
and the constraints the device must first satisfy. Prohibition, on
the other hand defines a situation when a device is forbidden
from taking a specific action.

The fundamental modeling primitive of the language is
xg:Policy. This construct is used to represent any policy
expressed in the language. A policy defines a collection of
facts and constraints that can be used for deciding whether a
policy is applicable to current state of a device, i.e. a policy
controls the device’s access to spectrum.

A permissive policy, xg:PermissivePolicy, represents a
special policy subclass that permits devices to access a
spectrum whenever a device and its evidence can satisfy the
policy’s constraints.

A prohibitive policy, xg:ProhibitivePolicy, is another policy
subclass. It prohibits devices to access a spectrum whenever a
device and its evidence violate one of the policy’s constraints.

The relationships of the three terms are shown in Fig. 3.
Software-defined radio may operate over multiple

concurrently applicable policies. For example, a radio may
have policies from two regulators, each regulating one
spectrum band the radio is capable of operating at. Moreover,
some policies may overlap for the same frequency band where
the device is attempting to transmit.

rdfs:subClassOf

rdf:type

xg:PermissivePolicyxg:PermissivePolicy xg:ProhibitivePolicyxg:ProhibitivePolicy

xg:Policyxg:Policy

rdfs:Classrdfs:Class

rdf:typ
e rd

f:ty
pe

rdfs:subClassOf

Figure 3. XG Policy Language model.

In order to support multiple policies, the language defines
vocabulary for creating meta-level policies. Meta-level policies
are used for guiding the operation of access control policies,
i.e. for guiding permissive and prohibitive policies. The meta-
level vocabulary defines constructs for de-conflicting
overlapping policies.

A default de-confliction rule of the language states that a
prohibitive policy overrides permissive policy. At the same
time, the meta-level vocabulary allows one to define absolute
and relative prioritization of policies, thus overriding the
default rule. The language defines vocabulary for assigning
numeric priority levels to policies. The language also defines
vocabulary for relatively ordering policies by defining
relationships between pairs of policies.

In addition to policies, the language defines vocabulary for
expressing knowledge about the state and capabilities of a
device. Using this vocabulary, one can define, express, and
inter additional information about different devices and their
capabilities. Additionally, the vocabularies include terms for
expressing state of each functional aspect of a device. This
may, for example, include an operational configuration of a
transmitter in terms of power and frequency as well as history
of collected detections for a signal detector, the latter
representing an evidence. The language, however, does not
define constructs for expressing how the knowledge was
contained.

In order to express the evidence and states of software-
defined radios, the language defines domain vocabulary for
custom networking and electrical engineering concepts. This
includes, for example, vocabularies for expressing and
reasoning about time, location, frequency, power, and signals.

The language also defines vocabulary for expressing
conditions on the device’s state. The language uses the W3C
Semantic Web Rule Language (SWRL) [5]. SWRL, in turn,
builds upon OWL abstract syntax and defines vocabulary for
representing Horn-like rules.

The language thus allows one to define a policy for
controlling spectrum access by specifying desired radio states
and collected supporting evidence and by restricting undesired
situations.

As shown in Fig. 4, a policy consists of three sections. First
is a meta-definition for allowing a policy component to
determine when the policy is applicable and how it affects the
radio. Next is a set of information the policy depends on.
Finally, the last section consists of rules for determining when
a device either meets or violates the policy’s requirements.

D. Policy Management and Provisioning
Authenticated and authorized stakeholders create and

modify policy documents using the Policy Authoring Tool.
Additionally, the stakeholders employ Policy Analysis and
Validation Tools in order to analyze the effects and validate
the correctness of the policies. This process mostly involves
verification that the resulting policy represented in the XG
Policy Language correctly represents the intended meaning of
original policies, which are often described in plain English
and thus subject to interpretation.

Using a secure communication channel, the stakeholders
make the policies available to XG operators and XG users.
Depending on accountability, either XG operators or XG users
are responsible for obtaining policy updates as they become
available. This role will be, however, mostly applicable to XG
operators only.

The XG operator is responsible for pushing policy updates
into appropriate devices. If the device does not receive proper
policy updates, the operator is risking that the device will lock
itself and will need to be reset, re-loaded with new policies,
before it can be used again.

The XG operator employs the Policy Administration
Console for communicating with its devices. Each operator is
assigned at least one X.509 certificate and a matching private
key. Similarly, each radio is assigned another X.509 certificate
and a matching private key.

When operator wishes to send a message to a radio, its
Policy Administration Console creates a specific RPC
command according to the IETF NETCONF [6] format, an
XML-based [7] replacement for the IEEE Simple Network
Management Protocol (SNMP) [8].

The message format is based on XML. Each RPC command
or reply element is an XML element defining one of the
specific commands or responses supported by the Policy
Manager located on a software-defined radio or its proxy. The
element includes a unique message identifier, timestamp,
sender identity, and indented recipient identity. For commands,
the element also includes the method specifying the type and
the content of a command. For feedback responses, the
element includes a unique message reply identifier, an error or
an ok element, and an optional data element populated with
requested content.

Additionally, the RPC element contains an XML digital
signature for validating the authenticity and authorization of
the RPC command and its issuer. The signature contains a
digest hash value of the RPC message, the key information
from X.509 certificate, and a signature value signing the entire
signature element using the issuer’s private key.

Once constructed and signed, the Policy Administration
Console sends the message over a secured link to the
destination where the message is recognized as either a policy
command or query and sent to the local Policy Manager for
processing.

Policy Manager acts as a gateway to the accredited policy
components located on a device. The on-device policy
component architecture is illustrated in Fig. 5.

Figure 4. A policy consists of meta-description, facts, and constraint rules.

As an alternative, some of the components may be located
on a proxy controller. This is particular important for devices
with limited computational resources or for client devices in an
infrastructure-supported server-client networks. The modified
architecture is illustrated in Fig. 6.

The Policy Manager first checks the message for security by
validating authentication and authorization of command
issuers and sources. The identity of the issuer, the sender, and
the destination must be included in the signed message. Using
this approach, Policy Manager verifies the integrity of a
command, the authenticity of the sender, the authorization of
the sender to issue such command, authenticity of the receiver;
and the timeliness of a command for avoiding replay attacks.

If the Policy Manager is able to verify that the message
should be processed, the Manager checks the type of the
message in order to either adjust the policy component state or
to answer specific policy-related inquiry.

The Policy Manager is responsible for providing a persistent
storage for received policies and for loading active policies
into Policy Conformance Reasoner. Policy Manager supports
multiple policy configuration modes. Each configuration mode
represents a set of policies that are applicable when the mode
is “activated”. Exactly one mode can be activated at a time and
that mode is tagged as “running”. All policies that are part of
the running policy configuration mode are automatically
loaded and activated in the Policy Conformance Reasoner.

The Policy Manager allows operators to add and remove
policies from any configuration mode. When a configuration
mode is not specified, the current running mode is assumed by
default. The Policy Manager also allows operators to switch
between modes. When a mode changes, all policies belonging
to the previous mode are unloaded and all policies from the

new mode are loaded and activated. Hence, by switching a
mode, policy administrators can quickly switch between a set
of policies.

The Policy Manager also allows operators to query state of
each configuration mode. Unless declared otherwise, the
current running mode is assumed by default.

Additionally, the Policy Manager enables operators to query
state of each configuration mode. Each configuration mode
consists of a set of policies. Additionally, the running
configuration mode is associated with a set of decisions,
complaints, conflicts, and the overall status of the Manager to
allow operators to monitor the health of their systems.

The received message may contain a command that affects
the current configuration mode. Either a policy may have been
added or removed from the mode or another mode may have
been activated. In these situations, Policy Manager is
responsible for activating the right set of policies inside the
Policy Conformance Reasoner (PCR).

From a typical policy-based network management
perspective, the PCR functions as a local policy decision unit.

The PCR is responsible for parsing and validating a policy.
It checks that the policy conforms to XG Policy Language
definitions. The PCR also verifies the validity of the policy by
examining the policy’s meta-description.

Once validated, the PCR converts the policy into its internal
representation. The PCR extracts the data defined inside the
policy document as well as extracts and optimizes the
constraint rules defined by the policies.

Software-Defined Radio Software-Defined Radio Accreditation Boundary

System Strategy
Reasoner

Tuner/ModemTuner/ModemDetectorsDetectors

Spectrum
DB

Spectrum
DB

SchedulerScheduler

Channel
Candidate List

Channel
Candidate List

Freq. SelectionFreq. Selection RendezvousRendezvous

Accredited Kernel

Policy
Database
Policy

Database

Policy
Conformance

Reasoner

Policy
Conformance

Reasoner

Policy EnforcerPolicy Enforcer

Policy
Manager
Policy

Manager

Override
Approve / Deny

Provide
Requirements

Spectrum
Access
Policy

Spectrum
Manager

Spectrum
Manager

Figure 5. Policy components of an autonomous software-defined radio.

Accredited Remote ControllerAccredited Remote Controller

Policy
Database
Policy

Database
Policy

Conformance
Reasoner

Policy
Conformance

Reasoner
Policy

Manager
Policy

Manager

Device ProxyDevice Proxy

Software-Defined RadioSoftware-Defined Radio

Accreditation
Boundary

System Strategy
Reasoner

Tuner/ModemTuner/ModemDetectorsDetectors

Spectrum
DB

Spectrum
DB

SchedulerScheduler

Channel
Candidate List

Channel
Candidate List

Freq. SelectionFreq. Selection RendezvousRendezvous

Accredited Kernel

Policy
Conformance

Reasoner

Policy
Conformance

Reasoner

Policy EnforcerPolicy EnforcerOverride
Approve / Deny

Provide
Requirements

Spectrum
Manager

Spectrum
Manager

Figure 6. Policy components for a server-client software-defined radio.

Additionally, the PCR uses the policy’s meta-description in
order to insert the policy in the sorted list of all active policies
based on decreasing importance. This is necessary for reducing
the workload required for the PCR to reach a decision on
approving or denying a specific transmission request as well as
for computing available spectrum access opportunities.

Therefore, the PCR dynamically merges and deconflicts
policies as they are made available to the radio. The de-
confliction is based applying the default rule for breaking ties
between permissive and prohibitive policies, numerical priority
levels assigned to policies, and relative policy ordering. Even
in the event of one permissive policy and one permissive
policy being more important than each other, i.e. creating a
cycle, the default rule guarantees that a prohibitive policy takes
precedence and thus avoids potentially harmful interference by
rather denying instead of allowing a request.

The PCR computes decisions allowing or denying
transmissions based on requests originated from the Policy
Enforcer (PE).

The PE periodically evaluates the current state of the device
and the logical channels employed by the System Strategy
Reasoner. For each channel, the PE maintains a set of pre-
approved device states that the SSR must match in order to be
permitted to transmit. Alternatively, for each channel the PE
inquires with the PCR if the current state for that channel
would be approved. The PE maintains these decision caches as
to limit the amount of work required from the computation-
intensive PCR.

Ultimately, the PE pro-actively monitors channels the SSR
is attempting to use and enforces that transmissions originating
at the SSR fully satisfy policy requirements.

E. Spectrum Access Enforcement
The primary function of the Policy Enforcer (PE) is to avoid

harmful interference by interrupting transmission commands
sent to a modem on a software-defined radio.

For that the Policy Enforcer maintains a set of pre-approved

state models based on configuration policies and associated
validity time period. During the adjustable time period, the
Policy Enforcer assumes that the pre-approved device state
would in fact be approved. The time period may range from
zero to potentially hours as defined in, for example, the
Dynamic Frequency Selection (DFS) standard [9].

The detailed logical flow of sending data to a modem while
enforcing policies is shown in Fig. 7.

When the System Strategy Reasoner (SSR) attempts to send
a transmit command to the local modem, the command is
interrupted by PE.

The PE attempts to find a matching cached device state
decision. The PE evaluates the current radio state, which
includes current configuration, capabilities, and results from
detectors against pre-approved states. A device state tree is
shown in Fig. 8. If a matching decision is found, it proceeds
based on the approving value of the decision. If the cache
shows that a previous matching request was approved, it is also
approved, otherwise it is denied.

Alternatively, the PE constructs a full Petition request and
associates it with the current snapshot of the device. The
current snapshot represents the capabilities, configuration
states, and evidence for each component present on the device.
As some data is fairly static, this information is pre-loaded
inside PCR upon start-up or component change, and does not
need to be provided with each Petition request.

PE sends the request to the PCR, which evaluates it against
the ordered list of policies based on decreasing performance.
For each policy, the PCR checks the requirement constraints in
order to decide whether the policy is applicable to the petition.
If the policy is applicable and if its rules are met, the PCR uses
that policy as the decisive one.

Each rule associated with the policy represents a set of
logical and computational constraints on any capability,
configuration state or evidence provided by the device. We
have identified 18 policy rule categories based on the types of
constraints used in official regulatory policies. The categories

Pending Outgoing Data

Transmit Data

Decision
Found?

System Strategy ReasonerSystem Strategy Reasoner Policy EnforcerPolicy Enforcer Policy Conformance ReasonerPolicy Conformance Reasoner

Construct Petition Request Evaluate Existing Policies

Find Matching Cached Device State Decision

Send Data
To Modem Abort

Approved?
Convert to Approval/Denial

Cache Decision

Associate Lease Time

Figure 7. Overview of spectrum access enforcement.

are listed in Table 1. For each category, the rule may consider
up to several dozens of parameters from Fig. 8.

Therefore, if this policy was permissive, then the petition is
approved. Alternatively, if the policy was prohibitive and its
rule was satisfied, then the petition is denied.

At this point, the PCR can stop the evaluation. Since the
policy list is ordered by a decreasing priority, no policy of a
higher priority can override the reached decision.

The decision is returned to the PE, which caches it for a pre-
defined time period and which either blocks or allows the
transmission to proceed based on the decision value.

F. Spectrum Access Opportunity Discovery
In addition to permitting spectrum access, the policies can

be used to determine spectrum access opportunities. This
allows the System Strategy Reasoner (SSR) to recognize
automatically newly available channels and requirements that
the SSR must meet prior to transmitting on those channels.

The logical flow of this process is outlined in Fig. 9.
The SSR first prepares an opportunity selection request,

which is similar to a transmission petition request, except that
it does not fully populate all parameters of its state. For
example, the SSR may choose not to set a transmission
frequency and only provide the possible frequency ranges it
can or wants to support as a capability. The SSR submits the
request to the PCR.

The PCR evaluates the request against locally available
policies in order to discover missing values of unpopulated
parameters that would render the request a valid. In other
words, the PCR populates missing parameters, if possible, that

TABLE 1. POLICY RULE CATEGORIES

Automated policy revocations
Automated policy updates
Distributed control based types
Node identify restrictions
Group-based max power estimation
Bell-ringer group behavior
Group based types
Connectivity requirements
Beacon reception
Connectivity based types
Adjustable S/N Limits
TX power spectrum density limit
Ability to measure second and third harmonic
Device based types
Finite time duration authorizations
Time of Day restrictions
Temporal types
Database geographic/TV coverage area based
Geographic border field strength limits
Spatial types
LBT – TV band
LBT – Different, but known, up and downlink frequencies, and plans
LBT – Different, but known, up and downlink frequencies
LBT – Same up and downlink frequencies
Listen-before-Talk based types

root
Transmitter
 type
 state
 frequency, power, bandwidth, throughput quality, ...
 capability
 frequency range and precision, bandwidth range, ...
Receiver
 type
 state
 average power, bandwidth, frequency, SNR, ...
 capability
 frequency range and precision, bandwidth range, ...
Signal Detectors
 Signal Detector 1
 type
 state
 detection algorithm, frequency range, bandwidth,
 listen interval, listen duration, SNR, CINR, ...
 capability
 supported signals, algorithms, frequency ranges,
 frequency precision, bandwidth ranges, ...
 evidence
 Signal Evidence 1
 frequency range, bandwidth, signal, SNR, CINR,
 last listen time, last detection time, …
 Signal Evidence 2
 ...
 Signal Detector 2
 ...
Location Detectors
 Location Detector 1
 type
 state
 precision
 capability
 precision range
 evidence
 Location Evidence
 timestamp, precision, point
Time Detectors
 ...
Message Detectors
 ...
Group Sensing Detectors
 …
Networks
 Network 1
 type, role, members, ...
Services
Owners
 Entity (name)
 ...
Administrators
 Entity (name)
 ...
Manufacturers
 Entity (name)
 ...
Certifications
 Certification (by, from, to, version)
 ...
Compatibility Versions

…

Figure 8. Information maintained about device and its current state.

are necessary for approving the device state for a transmission.
For example, the PCR may conclude that in order for the
submitted configuration to be approved, the transmission
frequency must be either 5180 MHz or 2310 MHz. Therefore,
in this case, the PCR returns a list of two opportunities.

If found, opportunities are translated by a proxy the Policy
API component into two device states one representing a
configuration with a transmission frequency set to 5180 MHz
and another one with a transmission frequency set to 2310
MHz. The two device states are then returned to the SSR.

By evaluating the two opportunities, the SSR can conclude
that it needs to monitor for non-cooperative signals at either
frequency in order to be allowed to transmit at those
frequencies, and adjust its detector configuration and workflow
accordingly.

There are, however, situations when the PCR will be unable
to find or fully populate an opportunity. If the request does not
match any policy or if it violates a policy, then no opportunity
is found. Additionally, a parameter may not be bound to a
value if there is an unlimited set of possible values. For
example, while a value may be restricted to a certain range,
depending on the accuracy it may be very expensive to bound
a device’s position to be within continental USA. Therefore,
while for most cases the PCR is able to find a spectrum
opportunity; it may be unable to do so in every situation.

III. SYSTEM DEMONSTRATION

A. Prototype Implementation
The policy prototype implements the Policy Administrator

Console, Dissemination Framework, Policy Manager, Policy
Database, Policy Conformance Reasoner, and Policy Enforcer.
The prototype also implements a Radio Console for
demonstrating and testing the on-board policy components.
Additionally, the on-board policy components are integrated
with the System Strategy Reasoner and other components
demonstrating full capability of an XG-enabled software-
defined radio.

The Policy Administration Console is developed as a
Microsoft Windows application. The recommended hardware
requirements are equivalent to those offered by an off-the-shelf
desktop computer.

Fig. 10 shows a sample snapshot of the console. Using the
console, an authorized operator can query status of any radio in
its domain. The operator can choose between communicating
with one or with a set of radios at a time. Through the
interface, an operator can send commands to remote Policy
Managers ranging from adding and removing policies,
activating policy modes, and deleting log entries. Additionally,
an operator can use the interface to obtain a list of currently
active policies on a certain radio as well as preview historic
decisions made by the radio.

The Policy Manager, Database, Conformance Reasoner, and
Enforcer are developed using C/C++. For the demonstration
purposes reported in this article, the Policy Conformance
Reasoner employs a Prolog provided by SWI-Prolog [10]. As
the policy components are embedded in a resource-limited
device, the SWI-Prolog is replaced with a simplified reasoner
also developed in C/C++. While the hardware requirements are
designed for an embedded system, the demonstration prototype
described in this article is part of the Test Console, which is
also a Windows-based application loading the policy
components as a dynamic library – DLL. The prototype relies
on OpenSSL [11] for a security library. Additionally, for a
persistent database, the prototype relies on SQLite [12].

Fig. 11 shows a sample screen snapshot of the Test Console.
The console provides interface for modifying the radio’s state
and thus emulates the inputs from the System Strategy
Reasoner. Additionally, the console provides an interface for
recording complaints and conflicts in order to emulate
additional inputs into the policy components. Most
importantly, the console provides interface for accessing the
most important functionality of the policy components –
obtaining transmission permissions and discovering spectrum
access opportunities.

Find Spectrum Access
Opportunity Requirements

Construct Request

Opportunity
Found?

Narrow Request Domain

System Strategy ReasonerSystem Strategy Reasoner Policy APIPolicy API Policy Conformance ReasonerPolicy Conformance Reasoner

Evaluate Existing Policies

Identify ConstraintsConvert Constraints to Device State Requirements

Append Device State Information

Keep
Searching?

Opportunity

Abort

Figure 9. Workflow for discovering available spectrum access opportunities.

B. Prototype Demonstration
The XG Policy components were officially demonstrated to

military and commercial organizations in summer 2006 as part
of an overall XG capability demonstration.

The focus of the policy demonstration was to illustrate the
capabilities of Policy Manager, Conformance Reasoner,
Enforcer, and Administration Console.

We have designed a scenario consisting of two independent
administrators and a set of XG-enabled devices, represented by
Test Consoles. Each administrator was in charge of its “color”
team. Additionally, each radio was assigned a membership in
two or more teams. Consequently, each device was managed
by one or two operators. This illustrates a scenario when a
device operates in two regions with different points of control
or in one region with multiple points of control. Regions can
be divided geographically, in time, frequencies, and

applications. One sample demonstrated configuration is
illustrated in Fig. 12.

Each operator had an access to a repository of about fifty
policies. An operator could selectively configure one or more
radios she was permitted to control by changing configuration
modes and by adding or removing one or more of the available
policies from the radio’s local repository. The interaction
results were then displayed on the Test Console screens of
particular radios as well as in the status window of the
administrator’s Console.

The demonstration of the policy components successfully
showed that the policy-based approach is applicable and viable
to software-defined radios. The prototype illustrated
qualitatively the capabilities offered to radio to enforce
policies. In combination with detecting mechanisms employed
by XG-enabled software-defined radios, the approach ensures
that software-defined radios do not cause harmful interference.
Additionally, the policy-based approach showed the
capabilities to manage radios and secure access control to
interfaces changing the radio’s configuration, thus addressing
the second type of concerns. Consequently, the demonstration
has successfully shown that a policy-based approach is
applicable for responding to device malfunctions as well as to
malicious users attempting to abuse software-defined radios.

IV. CONCLUSIONS AND FUTURE WORK
We designed and implemented a policy-based framework as

part of the DARPA NeXt Generation communications program
to study and address the security concerns raised with
software-defined radios. The main emphasis of the framework
is to overcome two types of concerns – harmful interference
caused by a malfunctioning device and harmful interference
caused by a malicious user.

In order to avoid a harmful interference caused by a
malfunctioning radio, in tandem with signal-detection-based
interference avoidance algorithms employed by XG-enabled
software-defined radios, we designed a set of policy-based
components that are tightly integrated with the accredited
kernel on the device. The policy conformance and enforcement
components are responsible for ensuring that a device does not

Figure 10. A sample screen snapshot of a Policy Administration Console for

demonstrating the capability of policy-based management.

Figure 11. A sample screen snapshot of a Test Console for demonstrating the capability of policy-based control of software defined radios.

violate policies, which are encoded in a declarative language
and which define regulatory and other stakeholders’
requirements.

Since regulators and other stakeholders are not able to
certify every state of a device, we’ve moved the certification
and enforcement processes closer to the software-defined
radio. The policy component represents an official regulatory
proxy agent that enforces device’s operations on behalf of the
regulators based on their dynamic rules and requirements.

In order to avoid a harmful interference caused by a
malicious user, we use secure policy management and
distribution mechanisms in order to prevent malicious users
from altering loaded policies as well as from inserting
additional policies.

Suggested future includes: (1) Fielding this architecture in a
deployed network to obtain additional requirements and
detailed insights, and (2) Demonstrate that the architecture
supports low cost, low processor power radios via a prototype
hardware implementation.

REFERENCES
[1] DARPA XG Program, http://www.darpa.mil/sto/smallunitops/xg.html,

November 2006.
[2] F. Seelig and S. D. Jones, " A Description of the August 2006 DARPA

XG Phase III Demonstrations at Ft. A.P. Hill", November 2006,
Submitted to conference.

[3] Public-Key Infrastructure (X.509) (pkix) Charter,
http://www.ietf.org/html.charters/pkix-charter.html.

[4] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness,
P. F. Patel-Schneider, and L. A. Stein, "OWL Web Ontology Language
Reference", W3C Recommendation, February 2004.

[5] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M.
Dean. "SWRL: A semantic web rule language combining OWL and
RuleML", W3C Member Submission, 21 May 2004.

[6] Network Working Group, R. Enns, Ed., "NETCONF Configuration
Protocol", Internet-Draft, draft-ietf-netconf-prot-12, February, 2006.

[7] T. Bray, J. Paoli, C. Sperberg-McQueen, and E. Maler, "Extensible
Markup Language (XML) 1.0 (Second Edition)", W3C REC REC-xml-
20001006, October 2000.

[8] J. Case, D. Harrington, B. Presuhn, and B. Wijnen, "Message Processing
and Dispatching for the Simple Network Management Protocol
(SNMP)", RFC 2572, April 1999.

[9] Federal Communications Commission, "Rules to Permit Unlicensed
National Information Infrastructure (U-NII) devices in the 5GHz band",
FCC 03-287, November 18, 2003.

[10] OpenSSL: The Open Source toolkit for SSL/TLS, http://swi-prolog.org/,
November 2006.

[11] J. Wielemaker, SWI-Prolog, http://openssl.org/, November 2006.
[12] SQLite 3, http://sqlite.org/, November 2006.

Country A Country B

XG Admin Console
Network

Admin
Network

Admin

Member or Administrator of
Blue Team

Green Team
Yellow Team
Brown Team

Member or Administrator of
Blue Team

Green Team
Yellow Team
Brown Team

Figure 12. A sample scenario used to demonstrate the features and capability of a policy-based control of software-defined radios.

