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Abstract—This paper describes the design and implementation 

of a policy-based spectrum access control framework as part of 
the DARPA NeXt Generation communications program. The 
main emphasis of the framework is to overcome two types of 
concerns: harmful interference caused by a malfunctioning device 
and harmful interference caused by a malicious user. In tandem 
with signal-detection-based interference-avoidance algorithms 
employed by software-defined radios, we design a set of policy-
based components, tightly integrated with the accredited kernel 
on the radio, for avoiding potentially harmful interference caused 
by a malfunctioning device. The policy conformance and 
enforcement components ensure that a radio does not violate 
policies, which define regulatory and other stakeholders’ goals 
and requirements, and which are encoded in an abstract, 
declarative language. We further secure the policy management 
and distribution mechanisms in order to prevent malicious users 
from altering loaded policies as well as from inserting additional 
policies and thus causing a harmful interference. Additionally, we 
report on a prototype implementation and demonstration of our 
framework, which qualitatively illustrates the capability offered 
to radio for enforcing policies and the capability for managing 
radios and securing access control to interfaces changing the 
radio’s configuration. 
 
Keywords—Interference Avoidance, Policy, Radio Spectrum 

Management, Security. 

I. INTRODUCTION 

Smart software-defined radios (SDR) offer tremendous 
performance and operational benefits. These include the ability 
to employ dynamic spectrum access methods, to tailor the 
system design to a user’s unique circumstance, and to remotely 
configure and control networks; however, SDRs pose high 
security risks. The risks continue to hinder deployment of the 
technology. For the technology to succeed, SDR developers 
must carefully examine and mitigate these risks. 

The main source of security concerns is the “smartness” or 
the ability to reconfigure a deployed software-defined radio. It 
is almost ironic that the main advantage of the technology is 
also its main weakness. On one hand are concerns focusing on 
risks due to a radio’s malfunction. On the other hand are 
concerns that focus on security threats caused by a malicious 
user. Both types severely impact the technology’s future. 

Some concerns are generic and apply to any technology. 
These concerns need to be adjusted in order to focus on 
specific software-defined radio features. For example, although 

a malicious user could use a software-defined radio to interfere 
with an existing system, there is other adaptive technology 
readily available that could cause the same harm. The main 
concern should instead focus on how much easier it is to use a 
software-defined radio to achieve the interference versus other 
available technology. 

Other concerns, however, require a careful examination and 
need to be mitigated as they focus on characteristics and 
consequences of using adaptive software. Adaptive software 
can change its operation mode throughout the life of the radio. 
It is difficult and often unfeasible to verify all states of a 
software-defined radio. Additionally, a software-defined radio 
may operate in numerous bands during its lifetime. For each 
band, the software may need to emulate different processes. As 
the final processes may be unknown prior to a device’s 
production, the processes may need to change and re-configure 
dynamically. This raises many issues as to who should perform 
these operations and what effects these operations can have. 
This is very different from existing radio technology and 
significantly impacts current certification practices.  

A model is, therefore, necessary that addresses these 
security threats. Without mitigating the challenges, SDR 
technology is risking its own existence. If the technology is not 
accepted by existing commercial and military spectrum 
stakeholders, it will never be adopted. Moreover, if the 
technology is not accepted by regulatory stakeholders, it 
cannot legally be produced and made available to public.  

To address the challenges of SDR technology as well as to 
quantify the benefits it has to offer, the DARPA NeXt 
Generation (XG) Communications Program [1] is developing 
novel technologies and system concepts for dynamically 
redistributing allocated spectrum along with novel 
technologies to enable spectrum pooling and secondary 
spectrum sharing. The program focuses on both technical 
challenges, such as processing power and signal sensing 
requirements, and acceptance challenges, a subset of which are 
the security risks. 

As part of the XG program, Shared Spectrum Company is 
developing a policy-based network management framework 
for controlling spectrum access. This article reports on the 
prototype implementation and results of the effort that were 
successfully demonstrated in the summer of 2006. [2] 
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We designed a policy-based approach as policies enable a 
uniform yet flexible model for controlling devices built by 
different manufacturers. Additionally, as radios may operate in 
bands and locations under different jurisdictions and points of 
control, a policy-based approach allows each controlling body 
to re-use the model for adjusting devices to suit current 
requirements as well as for coordinating with other entities. 

Our approach consists of three areas. First area defines the 
foundation for representing policies. It provides the capability 
to define in a computer-understandable way what a radio can 
do and what the radio must not do. The area consists of a 
declarative policy language, types, rules, and instances. Next 
area defines accredited policy components on the device for 
enforcing policies by restricting the device’s operational state. 
The last area defines a framework for securely creating, 
managing, and controlling the device policies. 

The benefits of our approach are: 
- Ease of configuration – By changing policies and their 

content, one can modify any configuration, setting, or rule 
used by heterogeneous devices. 

- Ease of policy authoring – By using a declarative 
language, one can create a generic policy abstracting the low-
level requirements of specific devices. 

- Secure policy management – Using the management 
framework one can control what policies a device is using as 
well as monitor a device for its actions. The framework is 
further secured for limiting who can control the devices. 

- Secure policy distribution – Using the policy distribution 
framework, one can securely transmit policy commands and 
queries to devices as well as receive responses. 

- Secure policy enforcement – Policy components are part of 
an accredited kernel, which has a direct control over the 
transmitter and can thus impose limits on transmitted power 
and frequencies.  

- Automated policy synchronization – Policy components 
automatically identify stale policies and either request an 
update or stop the device from transmitting until the policies 
are updated. 

- Automated policy conflict resolution – Policy enforcement 
component automatically combines all policies and permits 
transmissions only if requirements imposed by all applicable 
policies are met. 

- Automated opportunity discovery – Policy components 
automatically determine sufficient device states that would 
satisfy policy enforcement requirements and make them 
available to the device as additional spectrum opportunities. 

In the present paper, we describe the policy-based 
framework and explore the benefits it provides. In Section 2, 
we describe the overall policy-based control architecture, the 
language, and the processes. In Section 3, we offer details on 
implementation and prototype demonstration. In conclusion we 
provide suggestions for future work. 

II. POLICY SYSTEM ARCHITECTURE 

A. Regulatory/ Control and Configuration Framework 
Smart software-defined radios and their security challenges 

have recently attracted vast interest and spawned topics of 
discussions across many communities. However, many of the 
questions raised are familiar; many of them were raised with 
other disruptive technologies. One thing that sets SDR apart 
from some of these technologies is the sheer scope of their 
potential, and as a result, the variety of interested parties they 
affect. A unique aspect of software-defined radios is that they 
propose a radically different approach from currently 
established principles that affects many stakeholders.  

The stakeholders – represented as actors – and their impact 
on software-defined radios are illustrated in Fig. 1. Although, 
the actors are the same as for any other wireless technology, 
the difference is where each actor can influence the design, 
implementation, and deployment of a radio. 

XG users and XG operators range from commercial and 
military bodies that are interested in pooling spectra together in 
order to improve their current spectrum access. There are also 
other XG users and XG operators who are interested in leasing 
spectrum or using spectrum available to the second market. In 
order to differentiate current users and operators using the 
spectrum from potential users and operators of XG software-
defined radios, without loss of generality we refer to the latter 
as XG users and XG operators.  

Next there are spectrum owners, users, and regulators who 
are excited about sharing spectrum with others or making 
sharing more available. At the same time, these “actors” 
require an assurance that the software-defined radios will not 
interfere with current spectrum users. 
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Figure 1.  A policy-controlled software-defined radio needs to enforce 

requirements of operator, user, regulatory bodies and other spectrum 
stakeholders. 



 

The traditional model employs a prevention mode to 
eliminate security threats. First, regulators define fixed 
requirements for building an application-specific radio. A 
manufacturer designs, produces, and proves to regulators that 
the built radio satisfies the requirements in order for the radio 
to be classified as “certified”. Only then can an operator or 
user purchase such a radio. Although the radio device may be 
configurable, the configuration options are minimal in 
comparison to the capability of configuring software-defined 
radios, and thus for the lack of better words, the radio is 
“certified and locked”. Therefore, devices are open to 
modification during manufacturer’s design and production 
phases only. In subsequent steps, devices are already locked. 
This implies that a manufacturer selects and initially 
configures devices. There is no support for future updates to 
manufacturer or regulatory policies on the device. 
Additionally, there is only a limited, indirect support for future 
updates to an operator’s custom policies affecting the device. 
These updates are external to the device. There is no support 
for explicitly enforcing regulatory, manufacturer’s, or 
operator’s policies on the device. Security threats are thus 
mitigated – prevented – by design.  

For SDR design we advocate an avoidance mode for 
eliminating security threats. Regulators still define fixed 
requirements; however, the requirements are now for a generic 
radio. A manufacturer designs, produces, and proves to 
regulators that her radio satisfies the requirements in order for 
the radio to be classified as certified. The device, however, 
contains software modules that allow for the radio to be re-
configured dynamically at later times. Therefore, the radio is 
“certified and open” as it can operate in different bands 
emulating different applications. At the same time regulators 
also define regulatory policies, which are applicable to specific 
applications and which are certified by the regulators for use. 
In this operating mode, the XG operator purchases an open, 
certified device from a manufacturer.  The XG operator then 

specifies the type of application the radio is to be used for by 
providing the device through a secure link with appropriate 
certified policies. The SDR device now consists of two 
certified objects – (i) a policy component, as part of the 
certified radio, which ensures that the radio conforms to 
policies, and (ii) the certified policies, which clearly define 
what the radio can do and what the radio must not do. 
Therefore, security threats caused by malicious users are 
prevented through enforced security guards on the device and 
on the interface links as any other device would do; however, 
security threats caused by malfunctioning or modifying a 
device are now eliminated by dynamically avoiding them. 

This approach addresses concerns raised by any stakeholder 
that is affected by smart software-defined radios. The approach 
allows regulators and other points of control to continue 
controlling where and how software-defined devices are 
allowed to transmit, yet at the same time this approach allows 
XG operators and XG users take the full advantage of a 
software-defined radio technology.  

B. Policy Architecture Components 
While the policy-based architecture advantages are clear, the 

complexity lies in the details. How can a software-defined 
radio be securely modified, directly and indirectly, by users, 
operators and regulators? How can a software-defined radio 
change its functionality by simply uploading different policies? 
How can a software-defined radio decide what policies to 
enforce? How can a software-defined radio resolve policy 
conflicts? 

To address these questions, we divide the policy architecture 
intro three areas. The overall architecture is depicted in Fig. 2.  

The first area represents a policy language with a set of 
policy classes and their respective instances. We delve into the 
details in the next section. 
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Figure 2.  Distributed Policy-based Spectrum Access Control Architecture. The software-defined radio includes a localized policy enforcer responsible for 
controlling spectrum access based on requirements provided by regulatory and other stakeholders. The radio is managed by a network administrator who relies on 

stakeholders for providing up-to-date policies. 
  



 

The second area represents on-node policy components. 
These are components that are present on every software-
defined radio platform, although as is illustrated later in this 
article, some of the components may be transferred onto a 
proxy controller. The components include a policy manager for 
managing local policies and responding to remote commands, 
a policy conformance reasoner for reasoning over policies and 
device-provided evidence, a system strategy reasoner for 
adjusting and selecting the device’s operational mode, and a 
policy enforcer for governing the radio by permitting only 
allowed transmission requests.  

From the policy perspective, the system strategy reasoner 
(SSR) represents an external module that controls the 
hardware, gathers data, forms strategies, and acts as an 
interface for transmitting and receiving data.  

The SSR is responsible for interacting with the policy 
conformance reasoner in order to determine what spectrum 
opportunities are currently available. Using that information, 
the SSR can determine and execute applicable system 
strategies that are needed in order to for the radio’s 
transmissions to conform to policies. 

Additionally, the SSR is responsible for providing the policy 
component with an access to its current state as well as 
evidential results obtained from other radio components, 
including detectors, and data received from other radios. 

It is, however, the policy enforcer (PE), which is responsible 
for assuring that the device does not cause harmful interference 
by enforcing that the SSR configures the radio in one of the 
approved opportunity states and by filtering transmission 
requests sent to the transmitter on the software-defined radio. 

The last area represents off-node policy components used by 
policy administrators and analyzers. For analyzers, this area 
includes policy authoring editor together with policy analysis 
and validation tools. For administrators, the area consists of a 
manager console and a policy dissemination framework. 

The Policy Administration Console provides a secure 
interactive method for operators to remotely modify the state 
of one or many radios. The operators are able to modify both 
policies and operational modes in which a radio or group of 
radios operates. The console relies on a X.509 Public Key 
Infrastructure (PKI) for authorization, authentication, and 
accounting [3]. Additionally, the console relies on a secure 
dissemination framework for securing direct and multicast 
links between the console and devices. Through the secure 
link, the console communicates with a Policy Manager located 
on the smart radio or on its proxy. 

The details of policy management and provisioning are 
described in the subsequent section. Before we describe how 
policies are uploaded onto a device and how they are employed 
by the device, we must first define the policies. 

C. Policy Language 
The XG Policy Language represents a declarative, semantic 

language for expressing policies and logic used for guiding 
operation of software-defined radios. Its main purpose of the 
language is to allow regulators, operators, and users to define 
abstractly requirements for controlling access to a spectrum, 
using a policy-driven evidential approach.  

The language defines concepts for expressing knowledge 
about a radio frequency device, its components, capabilities, 
and current state. The language also defines concepts for 
expressing restrictions on the devices and its components. 
Finally, the language defines concepts for combining the 
restrictions and definitions into rules and policies. 

The language is based on the W3C Web Ontology Language 
(OWL) [4], which provides an interoperable, machine 
independent language for expressing information that can be 
processed by humans and by software applications. Using 
OWL, one can create ontologies, which define vocabularies for 
representing meaning of a subset of domain-dependent terms 
and the relationships between those terms. Using these 
ontologies, one can annotate information that can be shared 
and used to infer additional information across heterogeneous 
domains, applications, and platforms. 

Additionally, the language employs concepts from Deontic 
logic for expressing actions a device can undertake. The 
language focuses on two concepts – permissions and 
prohibitions. Permission defines what a device is allowed to do 
and the constraints the device must first satisfy. Prohibition, on 
the other hand defines a situation when a device is forbidden 
from taking a specific action. 

The fundamental modeling primitive of the language is 
xg:Policy. This construct is used to represent any policy 
expressed in the language. A policy defines a collection of 
facts and constraints that can be used for deciding whether a 
policy is applicable to current state of a device, i.e. a policy 
controls the device’s access to spectrum. 

A permissive policy, xg:PermissivePolicy, represents a 
special policy subclass that permits devices to access a 
spectrum whenever a device and its evidence can satisfy the 
policy’s constraints. 

A prohibitive policy, xg:ProhibitivePolicy, is another policy 
subclass.  It prohibits devices to access a spectrum whenever a 
device and its evidence violate one of the policy’s constraints. 

The relationships of the three terms are shown in Fig. 3. 
Software-defined radio may operate over multiple 

concurrently applicable policies. For example, a radio may 
have policies from two regulators, each regulating one 
spectrum band the radio is capable of operating at. Moreover, 
some policies may overlap for the same frequency band where 
the device is attempting to transmit. 
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Figure 3.  XG Policy Language model. 



 

In order to support multiple policies, the language defines 
vocabulary for creating meta-level policies. Meta-level policies 
are used for guiding the operation of access control policies, 
i.e. for guiding permissive and prohibitive policies. The meta-
level vocabulary defines constructs for de-conflicting 
overlapping policies.  

A default de-confliction rule of the language states that a 
prohibitive policy overrides permissive policy. At the same 
time, the meta-level vocabulary allows one to define absolute 
and relative prioritization of policies, thus overriding the 
default rule. The language defines vocabulary for assigning 
numeric priority levels to policies. The language also defines 
vocabulary for relatively ordering policies by defining 
relationships between pairs of policies. 

In addition to policies, the language defines vocabulary for 
expressing knowledge about the state and capabilities of a 
device. Using this vocabulary, one can define, express, and 
inter additional information about different devices and their 
capabilities. Additionally, the vocabularies include terms for 
expressing state of each functional aspect of a device. This 
may, for example, include an operational configuration of a 
transmitter in terms of power and frequency as well as history 
of collected detections for a signal detector, the latter 
representing an evidence. The language, however, does not 
define constructs for expressing how the knowledge was 
contained. 

In order to express the evidence and states of software-
defined radios, the language defines domain vocabulary for 
custom networking and electrical engineering concepts. This 
includes, for example, vocabularies for expressing and 
reasoning about time, location, frequency, power, and signals.  

The language also defines vocabulary for expressing 
conditions on the device’s state. The language uses the W3C 
Semantic Web Rule Language (SWRL) [5]. SWRL, in turn, 
builds upon OWL abstract syntax and defines vocabulary for 
representing Horn-like rules.  

The language thus allows one to define a policy for 
controlling spectrum access by specifying desired radio states 
and collected supporting evidence and by restricting undesired 
situations. 

As shown in Fig. 4, a policy consists of three sections. First 
is a meta-definition for allowing a policy component to 
determine when the policy is applicable and how it affects the 
radio. Next is a set of information the policy depends on. 
Finally, the last section consists of rules for determining when 
a device either meets or violates the policy’s requirements.  

D. Policy Management and Provisioning 
Authenticated and authorized stakeholders create and 

modify policy documents using the Policy Authoring Tool. 
Additionally, the stakeholders employ Policy Analysis and 
Validation Tools in order to analyze the effects and validate 
the correctness of the policies. This process mostly involves 
verification that the resulting policy represented in the XG 
Policy Language correctly represents the intended meaning of 
original policies, which are often described in plain English 
and thus subject to interpretation. 

Using a secure communication channel, the stakeholders 
make the policies available to XG operators and XG users. 
Depending on accountability, either XG operators or XG users 
are responsible for obtaining policy updates as they become 
available. This role will be, however, mostly applicable to XG 
operators only.  

The XG operator is responsible for pushing policy updates 
into appropriate devices. If the device does not receive proper 
policy updates, the operator is risking that the device will lock 
itself and will need to be reset, re-loaded with new policies, 
before it can be used again. 

The XG operator employs the Policy Administration 
Console for communicating with its devices. Each operator is 
assigned at least one X.509 certificate and a matching private 
key. Similarly, each radio is assigned another X.509 certificate 
and a matching private key.  

When operator wishes to send a message to a radio, its 
Policy Administration Console creates a specific RPC 
command according to the IETF NETCONF [6] format, an 
XML-based [7] replacement for the IEEE Simple Network 
Management Protocol (SNMP) [8]. 

The message format is based on XML. Each RPC command 
or reply element is an XML element defining one of the 
specific commands or responses supported by the Policy 
Manager located on a software-defined radio or its proxy. The 
element includes a unique message identifier, timestamp, 
sender identity, and indented recipient identity. For commands, 
the element also includes the method specifying the type and 
the content of a command. For feedback responses, the 
element includes a unique message reply identifier, an error or 
an ok element, and an optional data element populated with 
requested content. 

Additionally, the RPC element contains an XML digital 
signature for validating the authenticity and authorization of 
the RPC command and its issuer. The signature contains a 
digest hash value of the RPC message, the key information 
from X.509 certificate, and a signature value signing the entire 
signature element using the issuer’s private key. 

Once constructed and signed, the Policy Administration 
Console sends the message over a secured link to the 
destination where the message is recognized as either a policy 
command or query and sent to the local Policy Manager for 
processing. 

Policy Manager acts as a gateway to the accredited policy 
components located on a device. The on-device policy 
component architecture is illustrated in Fig. 5.   

Figure 4.  A policy consists of meta-description, facts, and constraint rules. 
  



 

As an alternative, some of the components may be located 
on a proxy controller. This is particular important for devices 
with limited computational resources or for client devices in an 
infrastructure-supported server-client networks. The modified 
architecture is illustrated in Fig. 6. 

The Policy Manager first checks the message for security by 
validating authentication and authorization of command 
issuers and sources. The identity of the issuer, the sender, and 
the destination must be included in the signed message. Using 
this approach, Policy Manager verifies the integrity of a 
command, the authenticity of the sender, the authorization of 
the sender to issue such command, authenticity of the receiver; 
and the timeliness of a command for avoiding replay attacks. 

If the Policy Manager is able to verify that the message 
should be processed, the Manager checks the type of the 
message in order to either adjust the policy component state or 
to answer specific policy-related inquiry. 

The Policy Manager is responsible for providing a persistent 
storage for received policies and for loading active policies 
into Policy Conformance Reasoner. Policy Manager supports 
multiple policy configuration modes. Each configuration mode 
represents a set of policies that are applicable when the mode 
is “activated”. Exactly one mode can be activated at a time and 
that mode is tagged as “running”. All policies that are part of 
the running policy configuration mode are automatically 
loaded and activated in the Policy Conformance Reasoner. 

The Policy Manager allows operators to add and remove 
policies from any configuration mode. When a configuration 
mode is not specified, the current running mode is assumed by 
default. The Policy Manager also allows operators to switch 
between modes. When a mode changes, all policies belonging 
to the previous mode are unloaded and all policies from the 

new mode are loaded and activated. Hence, by switching a 
mode, policy administrators can quickly switch between a set 
of policies. 

The Policy Manager also allows operators to query state of 
each configuration mode. Unless declared otherwise, the 
current running mode is assumed by default. 

Additionally, the Policy Manager enables operators to query 
state of each configuration mode. Each configuration mode 
consists of a set of policies. Additionally, the running 
configuration mode is associated with a set of decisions, 
complaints, conflicts, and the overall status of the Manager to 
allow operators to monitor the health of their systems. 

The received message may contain a command that affects 
the current configuration mode. Either a policy may have been 
added or removed from the mode or another mode may have 
been activated. In these situations, Policy Manager is 
responsible for activating the right set of policies inside the 
Policy Conformance Reasoner (PCR). 

From a typical policy-based network management 
perspective, the PCR functions as a local policy decision unit.  

The PCR is responsible for parsing and validating a policy. 
It checks that the policy conforms to XG Policy Language 
definitions. The PCR also verifies the validity of the policy by 
examining the policy’s meta-description. 

Once validated, the PCR converts the policy into its internal 
representation. The PCR extracts the data defined inside the 
policy document as well as extracts and optimizes the 
constraint rules defined by the policies.  
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Figure 5.  Policy components of an autonomous software-defined radio. 
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Figure 6.  Policy components for a server-client software-defined radio. 



 

Additionally, the PCR uses the policy’s meta-description in 
order to insert the policy in the sorted list of all active policies 
based on decreasing importance. This is necessary for reducing 
the workload required for the PCR to reach a decision on 
approving or denying a specific transmission request as well as 
for computing available spectrum access opportunities. 

Therefore, the PCR dynamically merges and deconflicts 
policies as they are made available to the radio. The de-
confliction is based applying the default rule for breaking ties 
between permissive and prohibitive policies, numerical priority 
levels assigned to policies, and relative policy ordering. Even 
in the event of one permissive policy and one permissive 
policy being more important than each other, i.e. creating a 
cycle, the default rule guarantees that a prohibitive policy takes 
precedence and thus avoids potentially harmful interference by 
rather denying instead of allowing a request.  

The PCR computes decisions allowing or denying 
transmissions based on requests originated from the Policy 
Enforcer (PE). 

The PE periodically evaluates the current state of the device 
and the logical channels employed by the System Strategy 
Reasoner. For each channel, the PE maintains a set of pre-
approved device states that the SSR must match in order to be 
permitted to transmit. Alternatively, for each channel the PE 
inquires with the PCR if the current state for that channel 
would be approved. The PE maintains these decision caches as 
to limit the amount of work required from the computation-
intensive PCR. 

Ultimately, the PE pro-actively monitors channels the SSR 
is attempting to use and enforces that transmissions originating 
at the SSR fully satisfy policy requirements. 

E. Spectrum Access Enforcement 
The primary function of the Policy Enforcer (PE) is to avoid 

harmful interference by interrupting transmission commands 
sent to a modem on a software-defined radio. 

For that the Policy Enforcer maintains a set of pre-approved 

state models based on configuration policies and associated 
validity time period. During the adjustable time period, the 
Policy Enforcer assumes that the pre-approved device state 
would in fact be approved. The time period may range from 
zero to potentially hours as defined in, for example, the 
Dynamic Frequency Selection (DFS) standard [9]. 

The detailed logical flow of sending data to a modem while 
enforcing policies is shown in Fig. 7. 

When the System Strategy Reasoner (SSR) attempts to send 
a transmit command to the local modem, the command is 
interrupted by PE. 

The PE attempts to find a matching cached device state 
decision. The PE evaluates the current radio state, which 
includes current configuration, capabilities, and results from 
detectors against pre-approved states. A device state tree is 
shown in Fig. 8. If a matching decision is found, it proceeds 
based on the approving value of the decision. If the cache 
shows that a previous matching request was approved, it is also 
approved, otherwise it is denied. 

Alternatively, the PE constructs a full Petition request and 
associates it with the current snapshot of the device. The 
current snapshot represents the capabilities, configuration 
states, and evidence for each component present on the device. 
As some data is fairly static, this information is pre-loaded 
inside PCR upon start-up or component change, and does not 
need to be provided with each Petition request. 

PE sends the request to the PCR, which evaluates it against 
the ordered list of policies based on decreasing performance. 
For each policy, the PCR checks the requirement constraints in 
order to decide whether the policy is applicable to the petition. 
If the policy is applicable and if its rules are met, the PCR uses 
that policy as the decisive one.  

Each rule associated with the policy represents a set of 
logical and computational constraints on any capability, 
configuration state or evidence provided by the device. We 
have identified 18 policy rule categories based on the types of 
constraints used in official regulatory policies. The categories 
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Figure 7.  Overview of spectrum access enforcement.  



 

are listed in Table 1. For each category, the rule may consider 
up to several dozens of parameters from Fig. 8. 

Therefore, if this policy was permissive, then the petition is 
approved. Alternatively, if the policy was prohibitive and its 
rule was satisfied, then the petition is denied.  

At this point, the PCR can stop the evaluation. Since the 
policy list is ordered by a decreasing priority, no policy of a 
higher priority can override the reached decision. 

The decision is returned to the PE, which caches it for a pre-
defined time period and which either blocks or allows the 
transmission to proceed based on the decision value. 

F. Spectrum Access Opportunity Discovery 
In addition to permitting spectrum access, the policies can 

be used to determine spectrum access opportunities. This 
allows the System Strategy Reasoner (SSR) to recognize 
automatically newly available channels and requirements that 
the SSR must meet prior to transmitting on those channels. 

The logical flow of this process is outlined in Fig. 9. 
The SSR first prepares an opportunity selection request, 

which is similar to a transmission petition request, except that 
it does not fully populate all parameters of its state. For 
example, the SSR may choose not to set a transmission 
frequency and only provide the possible frequency ranges it 
can or wants to support as a capability. The SSR submits the 
request to the PCR.  

The PCR evaluates the request against locally available 
policies in order to discover missing values of unpopulated 
parameters that would render the request a valid. In other 
words, the PCR populates missing parameters, if possible, that 

TABLE 1.   POLICY RULE CATEGORIES 

Automated policy revocations
Automated policy updates
Distributed control based types
Node identify restrictions
Group-based max power estimation
Bell-ringer group behavior
Group based types
Connectivity requirements
Beacon reception
Connectivity based types
Adjustable S/N Limits
TX power spectrum density limit
Ability to measure second and third harmonic
Device based types
Finite time duration authorizations
Time of Day restrictions
Temporal types
Database geographic/TV coverage area based
Geographic border field strength limits
Spatial types
LBT – TV band
LBT – Different, but known, up and downlink frequencies, and plans
LBT – Different, but known, up and downlink frequencies
LBT – Same up and downlink frequencies
Listen-before-Talk based types
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Figure 8.  Information maintained about device and its current state. 
  



 

are necessary for approving the device state for a transmission. 
For example, the PCR may conclude that in order for the 
submitted configuration to be approved, the transmission 
frequency must be either 5180 MHz or 2310 MHz. Therefore, 
in this case, the PCR returns a list of two opportunities. 

If found, opportunities are translated by a proxy the Policy 
API component into two device states one representing a 
configuration with a transmission frequency set to 5180 MHz 
and another one with a transmission frequency set to 2310 
MHz. The two device states are then returned to the SSR. 

By evaluating the two opportunities, the SSR can conclude 
that it needs to monitor for non-cooperative signals at either 
frequency in order to be allowed to transmit at those 
frequencies, and adjust its detector configuration and workflow 
accordingly. 

There are, however, situations when the PCR will be unable 
to find or fully populate an opportunity. If the request does not 
match any policy or if it violates a policy, then no opportunity 
is found. Additionally, a parameter may not be bound to a 
value if there is an unlimited set of possible values. For 
example, while a value may be restricted to a certain range, 
depending on the accuracy it may be very expensive to bound 
a device’s position to be within continental USA. Therefore, 
while for most cases the PCR is able to find a spectrum 
opportunity; it may be unable to do so in every situation. 

III. SYSTEM DEMONSTRATION 

A. Prototype Implementation 
The policy prototype implements the Policy Administrator 

Console, Dissemination Framework, Policy Manager, Policy 
Database, Policy Conformance Reasoner, and Policy Enforcer. 
The prototype also implements a Radio Console for 
demonstrating and testing the on-board policy components. 
Additionally, the on-board policy components are integrated 
with the System Strategy Reasoner and other components 
demonstrating full capability of an XG-enabled software-
defined radio. 

The Policy Administration Console is developed as a 
Microsoft Windows application. The recommended hardware 
requirements are equivalent to those offered by an off-the-shelf 
desktop computer.  

Fig. 10 shows a sample snapshot of the console. Using the 
console, an authorized operator can query status of any radio in 
its domain. The operator can choose between communicating 
with one or with a set of radios at a time. Through the 
interface, an operator can send commands to remote Policy 
Managers ranging from adding and removing policies, 
activating policy modes, and deleting log entries. Additionally, 
an operator can use the interface to obtain a list of currently 
active policies on a certain radio as well as preview historic 
decisions made by the radio. 

The Policy Manager, Database, Conformance Reasoner, and 
Enforcer are developed using C/C++. For the demonstration 
purposes reported in this article, the Policy Conformance 
Reasoner employs a Prolog provided by SWI-Prolog [10]. As 
the policy components are embedded in a resource-limited 
device, the SWI-Prolog is replaced with a simplified reasoner 
also developed in C/C++. While the hardware requirements are 
designed for an embedded system, the demonstration prototype 
described in this article is part of the Test Console, which is 
also a Windows-based application loading the policy 
components as a dynamic library – DLL. The prototype relies 
on OpenSSL [11] for a security library. Additionally, for a 
persistent database, the prototype relies on SQLite [12].  

Fig. 11 shows a sample screen snapshot of the Test Console. 
The console provides interface for modifying the radio’s state 
and thus emulates the inputs from the System Strategy 
Reasoner. Additionally, the console provides an interface for 
recording complaints and conflicts in order to emulate 
additional inputs into the policy components. Most 
importantly, the console provides interface for accessing the 
most important functionality of the policy components –
obtaining transmission permissions and discovering spectrum 
access opportunities. 
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Figure 9.  Workflow for discovering available spectrum access opportunities. 



 

B. Prototype Demonstration 
The XG Policy components were officially demonstrated to 

military and commercial organizations in summer 2006 as part 
of an overall XG capability demonstration.  

The focus of the policy demonstration was to illustrate the 
capabilities of Policy Manager, Conformance Reasoner, 
Enforcer, and Administration Console.  

We have designed a scenario consisting of two independent 
administrators and a set of XG-enabled devices, represented by 
Test Consoles. Each administrator was in charge of its “color” 
team. Additionally, each radio was assigned a membership in 
two or more teams. Consequently, each device was managed 
by one or two operators. This illustrates a scenario when a 
device operates in two regions with different points of control 
or in one region with multiple points of control. Regions can 
be divided geographically, in time, frequencies, and 

applications. One sample demonstrated configuration is 
illustrated in Fig. 12. 

Each operator had an access to a repository of about fifty 
policies.  An operator could selectively configure one or more 
radios she was permitted to control by changing configuration 
modes and by adding or removing one or more of the available 
policies from the radio’s local repository.  The interaction 
results were then displayed on the Test Console screens of 
particular radios as well as in the status window of the 
administrator’s Console. 

The demonstration of the policy components successfully 
showed that the policy-based approach is applicable and viable 
to software-defined radios. The prototype illustrated 
qualitatively the capabilities offered to radio to enforce 
policies. In combination with detecting mechanisms employed 
by XG-enabled software-defined radios, the approach ensures 
that software-defined radios do not cause harmful interference. 
Additionally, the policy-based approach showed the 
capabilities to manage radios and secure access control to 
interfaces changing the radio’s configuration, thus addressing 
the second type of concerns. Consequently, the demonstration 
has successfully shown that a policy-based approach is 
applicable for responding to device malfunctions as well as to 
malicious users attempting to abuse software-defined radios.  

IV. CONCLUSIONS AND FUTURE WORK 
We designed and implemented a policy-based framework as 

part of the DARPA NeXt Generation communications program 
to study and address the security concerns raised with 
software-defined radios. The main emphasis of the framework 
is to overcome two types of concerns – harmful interference 
caused by a malfunctioning device and harmful interference 
caused by a malicious user. 

In order to avoid a harmful interference caused by a 
malfunctioning radio, in tandem with signal-detection-based 
interference avoidance algorithms employed by XG-enabled 
software-defined radios, we designed a set of policy-based 
components that are tightly integrated with the accredited 
kernel on the device. The policy conformance and enforcement 
components are responsible for ensuring that a device does not 

 
Figure 10.  A sample screen snapshot of a Policy Administration Console for 

demonstrating the capability of policy-based management. 

 
Figure 11.  A sample screen snapshot of a Test Console for demonstrating the capability of policy-based control of software defined radios. 



 

violate policies, which are encoded in a declarative language 
and which define regulatory and other stakeholders’ 
requirements.  

Since regulators and other stakeholders are not able to 
certify every state of a device, we’ve moved the certification 
and enforcement processes closer to the software-defined 
radio. The policy component represents an official regulatory 
proxy agent that enforces device’s operations on behalf of the 
regulators based on their dynamic rules and requirements. 

In order to avoid a harmful interference caused by a 
malicious user, we use secure policy management and 
distribution mechanisms in order to prevent malicious users 
from altering loaded policies as well as from inserting 
additional policies. 

Suggested future includes: (1) Fielding this architecture in a 
deployed network to obtain additional requirements and 
detailed insights, and (2) Demonstrate that the architecture 
supports low cost, low processor power radios via a prototype 
hardware implementation. 
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Figure 12.  A sample scenario used to demonstrate the features and capability of a policy-based control of software-defined radios. 

 


